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Stability of Ion Acoustic Turbulent States 

D. F. DuBois  I and D.  Pesme 2 

Several proposed renormalized theories for "strong" ion acoustic turbulence are 
compared to the direct interaction approximation. These are applied to the 
calculation of the stability of ion acoustic turbulent states to the excitation of 
Langmuir waves. A kinetic instability proposed by Tsytovich, Stenflo, and 
Wilhelmsson is shown to be stabilized by resonant and nonresonant decay 
processes. The global kinetic stability of the Langmuir spectrum is enhanced 
through the coupling of opposite phase velocity Langmuir waves by the decay 
processes and by nonresonant scattering to regions of strong Landau damping. 
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1. I N T R O D U C T I O N  

Ion acoustic turbulence is probably the best understood regime of 
collisionless plasma turbulence. Quite detailed experiments are available as 
discussed in the articles by Slusher (1) and Horton, (2~ and there is a 
qualitative and perhaps semiquantitative agreement between experiment 
and theory as discussed in the article by Horton. (2~ Indeed, largely because 
of the efforts of Horton and Choi, (3) the renormalized turbulence theory for 
ion acoustic turbulence has been evaluated in more detail than for any 
other branch of collisionless plasma turbulence. The improvement of 
numerical simulation techniques discussed by Lindman (4) promises to 
provide a tool for more precise comparisons with analytic statistical tur- 
bulence theories. 

This article is mainly devoted to a study of the stability of states of ion 
acoustic turbulence to the excitation of high-frequency Langmuir waves. 
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This is essentially a side issue for ion acoustic turbulence unless--as predic- 
ted by some workers(5~Langmuir  waves could be unstable with 
appreciable growth rates, implying that the saturation of Langmuir 
excitations should be considered in formulating a theory of ion acoustic 
turbulence. The efficient transfer of energy from low-frequency ion acoustic 
excitations to high-frequency Langmuir waves would have implications in 
many areas and has particularly excited the interest of some astrophysicists 
since many mechanisms exist for the creation of ion acoustic turbulence 
and it is appealing to have a mechanism to convert this energy into high- 
frequency radiation. 

The stability of a state of ion acoustic turbulence to Langmuir wave 
excitation, not surprisingly, depends on the details of the ion acoustic tur- 
bulence. Among these are the shape of the ion acoustic potential flue- 
tuation spectrum in wave-vector space, the stage of evolution of the tur- 
bulence, and the source of free energy which drives the turbulence. This 
brings in the study of the self-consistent dielectric response function for ion 
acoustic turbulence, which is intrinsic to the study of ion acoustic tur- 
bulence and has been discussed in some detail by Horton. 

Since the work of Kraichnan (6) in 1958 it is known that there are two 
self-consistent aspects of a statistical turbulence theory. First one needs the 
linear (or infinitesimal) response function Rk(t, t') (or Green's function) 
which measures the mean response at time t of the turbulent system to an 
infinitesimal mean perturbation with wave vector k at time t'. In 
quasistationary turbulence the fourier transform over t - t' of this function, 
Rk((o), has poles in the complex frequency plane at ~o = ~ok+ i'yk which 
describe the coherent excitations of the turbulent system. The sign of ~k 
determines the stability of these excitations. The calculation of this tur- 
bulent response function is self-consistently tied to the calculation of the 
two-point correlation function of the fluctuating fields, Ck( t , t ' )=  
(6fk(V, t) ~fk(v', t ' ) ) ,  where for Vlasov turbulence 6fk(v, t) is the fluctuation 
from the mean of the phase space distribution function. Here angular 
brackets denote ensemble averages. 

If the prototype nonlinear equation (e.g., the Vlasov equation) has the 
form 

(c~,+Lk,)6fkl=�89 ~ aklk2k36fk26fk3 (1.1) 
kt =k2+k3  

where aklk2k3 =aklk3k2 , representing a quadratically nonlinear equation, 
Kraichnan ~7) and Leith (8) have shown that the fluctuations obey a 
generalized Langevin equation: 

(c~t + Lk) 6fk(t) + I t dt' v~(t, t') 6fk(t') = s~d(t) (1.2) 
J0 
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where v d is a renormalization of the linear operator L~ resulting from a 
consolidation of diagonal terms proportional to 8fk and the right-hand side 
is an effective Gaussian noise source arising from terms not coherent with 
6fk--i.e., not proportional to 8fk. The direct interaction approximation 
(DIA) arises from the lowest order of the algorithm determining v~ and snd: 

vdl(l , t ' ) =  E aklk2k3akak3ktRk2(t , t') Ck3(t , t') 
kl = k2 + k3 

(1.3) 

and 

k~, , /  ~ laklk2k312Ck2(t,t ')Ck3(t,t ') (1.4) 
hi = k 2 + k 3  

The response function Rk(t, t') is the causal Green's function of the 
diagonal part of the Langevin operator 

fo (O~+Lk) R k ( t - t ' ) +  dt" v~ ( t , t " )Rk ( t " - t )=3( t - t ' )  (1.5) 

By inversion of Eq. (1.2) using this operator one finds in Fourier space for 
the time difference variable {R~(co) = (2~r) -1 ~-~oo d ( t -  t') exp[ ico ( t -  t ' )]  
Rk(t-- t'), etc.} 

(16fl~o,) = IRk(~o)l 2 ~ Isndl2c.o) (1.6) 

which is manifestly positive definite. 
The response function is also seen to be the coherent response of the 

system to an infinitesimal mean source. Suppose a source spt(t) whose 
ensemble average (sext(t)) is nonzero is added to the right-hand side of 
Eq. (1.2); then it is easy to see that Rk can be expressed as the functional 
derivative 

Rk(t- C) ~(~f~(t))oxt ' , ~  = o  
6(s~ ( t ) )  oxt 

The fluctuations are driven by the incoherent noise source in Eq. (1.2) 
and respond with a turbulence renormatized response represented by 
Rk(t--t' ). The incoherent noise source is related to the intrinsic 
stochasticity of the turbulent system. The renormalized response as deter- 
mined by the poles of Rk(~o) can often (but not always) be expressed in 
terms of renormalized frequencies and damping rates of the linear modes of 
the system. 

In this paper we will apply these ideas to several aspects of ion 
acoustic turbulence. In Section 2 we review several proposed renormalized 
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theories of "strong" plasma turbulence and consider their relationship to 
the DIA approach. Only the "simply renormalized" theory of Horton and 
Choi ~3) has been worked out in detail for ion acoustic turbulence. This type 
of theory is based on the underlying assumption that the electrostatic fluc- 
tuations are (quasi) Gaussian random variables. This assumption is drop- 
ped in the full DIA theory but leads to a possibly intractable set of 
equations which account for the self-consistent connection between elec- 
trostatic fluctuations and fluctations in the charged particle phase-space 
distributions; because of the nonlinearity of the Vlasov equation neither of 
these types of fluctuations can be quasi-Gaussian. 

In Section 3 we apply the renormalized turbulence equations to the 
stability of Langmuir waves in states of ion acoustic turbulence. The 
question of stability centers around a kinetic instability mechanism arising 
in weak turbulence theory which was first identified by Tsytovich, Stenflo, 
and Willhelmsson ~5) (TSW). They called this effect "turbulent 
bremsstrahlung"; in this mechanism electrons which are in resonance with 
the low-frequency ion acoustic waves are retarded and, owing to their 
accelerated motion, radiate a variety of high-frequency waves including 
electromagnetic and Langmuir waves. 

We have studied the competition of the "turbulent bremsstrahlung" 
(TB) effect with other effects which tend to stabilize Langmuir (and elec- 
tromagnetic) waves. We find that decay interactions, in which a Langmuir 
wave is scattered into another wave vector state by the emission or 
absorption of an ion acoustic wave, generally stabilize Langmuir waves 
against TB. In the results to be discussed here we extend our earlier work ~9) 
to include the strong turbulence effects in stationary turbulence and the 
global wave kinetics of the decay process which takes into account scat- 
tering-out as well as scattering-in processes. Here a new stabilizing effect 
arises: The TB effect destabilized Langmuir waves with (say) positive phase 
velocities while stabilizing waves with negative phase velocities. The decay 
process strongly couples waves with the two signs of the phase velocity, 
and in this coupled system the net destabilizing effect is greatly reduced. 
We have shown that nonresonant decay processes provide stabilization in 
regimes where resonant processes are not kinematically allowed and 
provide a mechanism by which Langmuir waves are scattered to high wave 
numbers where Landau damping provides the ultimate stabilization of the 
Langmuir spectrum. The consideration of nonresonant decay processes 
implies a parameter ordering which accounts for the finite width of spectral 
resonances and retains terms not customarily considered in weak tur- 
bulence theory; these terms generally dominate the TB effect. 
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2. PLASMA TURBULENCE THEORY: 
WEAK AND RENORMALIZED 

We begin with the iterative solution of the Vlasov-Poisson system as 
given by Horton's (2) Eq. (7) to third-order terms: 

I~lkOk ~- E 8(]?k2~klOk2"qt- E 8(3) d~ ,-~ ~b ~ -0  (2 .1)  , kl,k2,k3 'Fkl Wk2 k3 
kl+k2--k kl+k2wk3=k 

where k e = (ke, coi), etc. The DIA algorithm, suitably generalized to account 
for the cubic nonlinearity, yields the following equation for the electrostatic 
fluctuation spectrum Ik = ( I~bkI 2): 

182)12(1~bkl2 ) = 2 ~ ~2) 2 2 1Ski,k21 (l~lk,)( l~l~2) (2.2) 
k=kl+k2 

where the renormalized dielectric response is 

V48(2) 8(2) 1 
l k',k._=k k',k 28(k3, ) ~',k (l~blk') 2 (2.3)  =G-EL 8L , 

This is Horton's Eq. (22), which has first derived by Tsytovich (~~ for 
plasma turbulence. The nonlinear coupling coefficients will be given 
explicitly below. 

These equations will be the basis for most of our discussions in this 
paper. Several observations are important to make: First we note as did 
Horton (2) that the simple weak turbulence theory results in Eq. (2.3) but 
with 82~ replaced by the linear dielectric e~ ~, and Eq. (2.2) with 18~12 k' 
replaced by nl l * G (G) �9 Various arguments including the summation of secular 
terms result in the more symmetrical expressions given which are clearly 
consistent with the general realizability structure of the DIA. The second 
observation is that the incoherent source term, arising in this 
approximation from wave-wave coupling, is present as in the general DIA. 
In the strict weak turbulence theory such as that of Kadomtsev (n) this 
term is taken to be zero because there is no resonant decay interaction 
between ion acoustic waves. This leads to the condition e ~ (  I~bl 2) } = 0, k~ 
which determines the spectrum in steady state or for the quasistationary 
case to Horton's Eq. (9) with the final term on the right-hand side omitted. 
The mode simulation studies of Horton et al. (3) indicate that these three 
wave incoherent source terms are subdominant for determining the ion 
acoustic turbulent spectrum. 

Another observation to be made is that while Eq. (2.2) is exactly the 
result of the DIA algorithm applied to Eq. (2.1) (suitably generalized to 
incorporate the cubic nonlinearity) it is not the same as the DIA algorithm 
applied to the full quadratically nonlinear Vlasov equation! The later 
theory treats 6f~(v, t) and &kk(t)=Y~jk-24rcej~ dv 6f]~(v, t) as statistically 
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equivalent; this is consistent with this linear relationship between 6f j and 
&b. (The index j represents the charge species and will sometimes be sup- 
pressed.) The nonlinear Poisson equation is derived from an expansion of 
6fk in powers of &bk, which implies that 6fk and ar have different 
statistics. For a trivial example, if we assume &be to obey Gaussian 
statistics then 6fk, if 6fk is determined as a power series in ~bk, cannot be 
Gaussian beyond the linear approximation. 

The full DIA applied to the Vlasov equation has been given in several 
references312 17) It is a very complicated theory to evaluate even for the 
simplest cases; in the present article we will only touch on certain aspects 
which can be seen by direct inference from Eqs. (2.2) and (2.3); this will 
give some of the flavor of the complete theory but will be rather incom- 
plete. 

For this and other reasons we need the complete expressions for the 
nonlinear coupling coefficients which can be found in Ref. 3 and in most 
standard texts on weak turbulence theory: 

0 )  2 ej pj 
g(2 )  ~ .  _ ~ m s  k ' ,k  -- k'  k 2 

x dv k ' . t~  
0 ) - k . v + i 6  

1 

+ k" '~co ,  k , . v + i  ~ 
2 

e(2) 1 V ej C0pj 
k,-~ '-  2~. rnjk 2 

x dr0), k , . v + i  6 

8(3) _ _ 

k ' , - - k ' , k  - -  

0 ) " -  k".  v + i6 

k"  a~) <fJ(v)> 

k "  �9 dv 

(2.4) 

( - k ' - O ~  1 
0 ) - k . v + i 6  

1 k' �9 t3,~) ( i f ( v ) )  
+ k ' O v 0 ) , _ k , . v _ i  6 

1 gj 2 pj 

5 -U 

f 1 l 
• dv _ k . v + h s k " 8 ~ 0 ) , , _ k , , . v + i 6  

1 k'- r 
• - k ' ~ , 0 ) ,  k , . v _ i  6 

+ k'-ao 1 k-a ] <fi(v)> 
0 ) - k . v + i 6  / 

k . ~  

(2.5) 

(2.6) 
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On very general grounds it has been proven that the nonlinear dielec- 
tric response can always be written in the form (14'~2/ 

= 1 -  . O~, f k(v-J ') (2.7) g2' ~ ico~jk-2 f dv f dv' g~(v, v') k 
j = e , i  

where g~.o~(v,v') is a renormalized single-particle (or quasiparticle) 
propagator for particle of species j; g~,,~(v, v') is generally nonlocal in 
velocity space. Less familiar is the "renormalized distribution," which obeys 
an equation 

k .d .  f~,,~(v) = k - t ~ ( f J ( v ) )  + k �9 v~J~(v) (2.8) 

This nomenclature is used because Eq. (2.7) is reminiscent of the linear 
dielectric response where gk~(v, v') = i(co- k.  v + i6) 1 6(v - v') and f]s = 

(ff(v)>- 
This is a very convenient notation but is quite misleading physically: 

fk(v) is not the renormalized or observable mean distribution which is 
e 0 if O ~ ( f > = 0 .  simply ( f )  in our notation: It is easily shown that v k = 

The nonzero mean distribution ~v ( f>  or "mean field" provides a linear 
coupling of the fluctuation fk to the electrostatic field fluctuations ~bk 
(or Ek); the operator v~(v) describes the renormalization of this mean-field- 
induced coupling or "vertex" in field theory language. This physical effect 
was apparently first considered by Kadomtsev (11'15/ and later treated in 
detail by DuBois and Espedal (12) for Vlasov turbulence and in a special 
approximation for drift wave turbulence by Dupree and Tetrault/~s) The 
full theory of gk(V, V') and fk(v) has been given elsewhere. (12'x5) It is shown 
that gk(v, v') obeys an equation of the form 

- ig~(v, v ' )  = [co - k .  v + ivY(v, v ' ) ]  - '  6 ( v -  v ' )  

= 6(v--v') 1 ivf(v, v') 1 
c o - k ' v +  i6 c o - k ' v  + i6 c o - k ' v ' +  i3 

1 1 (* 

- | dr" v[(v, v") 
co - k" v + it5 co - k" v" + i3 J 

1 
f" " v' 4-"'" (2.9) x vktv, ) c o - k ' v ' + i ~ 5  

where v[(v, v') is a single-particle "self-energy" operator which accounts for 
the reaction of the turbulent system on the propagation of a single-particle 
excitation. This is a generalization of Eq. (13) in Horton's article. If we use 
this expansion of gk(v, v') we can write g~l as 

822/39/5-6-22 
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g~= 1 + ~  0)2k_2 y dv 1 k ' d ~ ( f f ( v ) >  
PJ 0 ) - k ' v + i 6  

J 

1 vf(v, v") - i ~ 0)2pj k 2 f dv f dv' 0) _ k . v + i 6 
J 

1 
x k- t3,(ff(v) > 

0 ) - k ' v ' + i 6  

+ ~ 0)2 k 2 f dv 1 k.  VkEg(V) + ""  (2.10) 
PJ c o - k - v + i 6  

J 

On comparison of this equation and the weak turbulence expressions for 
Eqs. (2.3)-(2.6) for e~. l we can identify the lowest-order expressions for 
operators vkYo~(v, v') and v(~(v). For example, extracting all terms from 
Eq. (2.3) which contain two propagators with labels k, co, we can identify 
the operator v~(v, v') as 

e~ f 2 , i k ' .  t3~6(v-v ) 
vfJCv v') = dk'  09" - k""  v + i6 k~ , m23 <[~blk') k ' ~  

0)  2 

• ilk" 1 k,,. O~(fj(v) > 
O~ co-_ k,,. v + i6 

1 -k"  d~<ff(v)>] 
+ k"" ~ 0 ) ,_k , .  v + i ~ 

1 
�9 k"dv,  (2.11) 

• 09" - k " .  v' + i6 

The first term alone leads to the familiar resonance broadened propagator 
in the simply renormalized approximation given in Horton's Eq. (12). In 
this approximation v f is a local second derivative operator in v space. 
(However, the operator gk(v, v') is nonlocal even in this approximation.) 
The second term is nonlocal in velocity space and arises from the 
polarization terms in the weak turbulence theory. The existence of such 
nonlocal renormalization terms arising from polarization effects was first 
pointed by DuBois and Espedal. ~ The complete DIA algorithm ~ gives 
a "completely renormalized" version of Eq. (2.11) containing renormalized 
propagators and dielectric responses in all expressions as well as more 
general spectral correlation functions. The consequences of the nonlocal 
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polarization terms are poorly understood for ion ion acoustic turbulence. 
The simply renormalized scheme without polarization effects used by Hor- 
ton and Choi (3) has the great advantage of being amenable to detailed 
evaluation and leads to qualitative agreement with experiment and com- 
puter simulation. It remains a challenge to estimate the effect of the 
polarization terms for ion acoustic turbulence. The only case where 
analytic progress has been made is for the nonlinear evolution of the weak 
warm beam instability for an electron plasma in the strong mode coupling 
regime. (~9) In this case it was shown that the polarization effects are exactly 
the same order as the direct renormalization terms. 

In considering the problem of the stability of Langmuir waves in a 
state of ion acoustic turbulence in Section 3 we find that the perturbative 
polarization corrections to the dielectric response play a crucial role. 

The renormalization of the mean field coupling v~(v) can also be 
extracted from the weak turbulence equation for e21 by looking at the terms 
containing only one factor (co-k.v+ig) 1 and comparing with 
Eq. (2.10). One finds 

= e )  f k' 1 
. rn~Jdk'  . t ?~co , , _k , , . v+ i sk  t?~ 

1 
x d _ k,. v _  i6 k' �9 t?~,<fJ> < t~b~,l 2 > 

+-~  -~ jdk ' fdv '  ~k" L K " ~  , , _ k , , . v + i 6  k;'.O~ 

1 k'. ~ ]  (f:(v) > + k"'t?~co, k, .v+i 6 

1 1 
x co,,_k,,.v,+i6k. O~,co,_k,.v,_icsk,.t~v,<fJ(v,)> 

Again we see there is a direct and  a polarization contribution involving the 
dielectric response. The direct term was actually first correctly calculated 
by Kadomtsev (j~l and subsequently by several other authors (12,1s) and 
corresponds to the renormalization Ck(:v> given in Horton's Eqs. (14) and 
(15). The polarization terms were first considered in Ref. 12 in the fully 
renormalized DIA theory. The theory of Kadomtsev also had polarization 
contributions but they did not correspond exactly to the DIA results; 
recent work (15) has shown that when his "weak coupling approximation" is 
consistently carried out it leads exactly to the DIA results. The effects of 
the mean field coupling renormalization have not been systematically 
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explored for ion acoustic turbulence. Again for the weak beam instability in 
one dimension these terms were found to be of the same order as the 
propagator renormalization effects. (19) The renormalized theory for g and 
v e without the polarization terms can be shown (17) to arise from the full 
Vlasov equation (not the expansion in powers of~b) when the electric 
potential fluctuations are assumed to be Gaussianly correlated. 

We can then identify three turbulent theories: 
Theory 1. The DIA algorithm applied to the nonlinear Poisson 

equation (2.1) which leads to the Tsytovich equation (2.2) with renor- 
malized G -  "1 k, but no renormalized g's or vE's in its internal structure. This 
theory we have seen contains the leading terms in the renormalization 
series for g and v E to order (]~b12). We will use this theory extensively in 
Section 3. 

Theory 2. The theory of the Vlasov equation which assumes 
Gaussian correlated qk k and which leads to the renormalized g and v E 
without polarization terms. (17) This is the theory evaluated in the simply 
renormalized case but with ve=  0 by Horton et al. ~3~ for ion acoustic tur- 
bulence. 

Theory 3. The full DIA for the Vlasov-Poisson system which treats 
the non-Gaussian correlations of 6./" and &b on an equal footing which is 
consistent with the linear Poisson equation connecting &b with (~f 

Theory 1 has been used by Tsytovich to treat the turbulence-induced 
finite linewidth of ion acoustic excitations in the quasistationary turbulent 

-s in our notation) state. The finite renormalized linewidth (dcok in Horton, v~ 
enters via the renormalized dielectrics enl and e nl in Eqs. (2.2) and kco k k ' ,co - -  co' 

(2.3) and in the Lorentzian line shape for (l~buco] 2) given in Horton's 
Eq.(23) [-or our Eq.(3.9) below]. These turbulence-induced finite 
linewidths allow off-resonance three-ion acoustic wave interactions to con- 

~ nl  s 1 tribute both to the renormalized ion acoustic growth rate v~, - (& /&ok) 
Im enl(k, col) and to the incoherent noise on the right-hand side of Eq. (2.2). 
Tsytovich finds gS/co~(WS/nT) when ( k t / ~ D ) m a x 4  > W'/nT> (k'2o)4min; in a 
strong resonance broadened limit we find g~/~o~(WS/nT) m when 

4 r t (k 2D)ma x < WS/nT. Here k~ha, and kma x are, respectively, the minimum and 
maximum wave numbers in the support of the ion acoustic spectrum. (A 
similar calculation for Langmuir waves is carried out in Section 3.1.) In our 
notation T represents the electron temperature and 2o the electron Debye 
length. 

In the quasi-Gaussian Theory 2 the incoherent noise contribution is 
changed from that in Eq. (2.2) when wave-particle resonances become 
important in the wave-wave matrix elements such as e(~)k~ and higher-order 
terms. This leads to the equations for the two-point phase space correlation 
function considered by Dupree in his "clump" theory. (~7) Consideration of 
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this subject in detail is beyond the scope of this paper. Enhanced 
incoherent noise due to the chaotic granulation of phase space will tend to 
increase the value of the renormalized ion acoustic damping [g~,[ in the 
quasistationary case over that predicted by Theory 1. We consider only 
well-developed ion acoustic turbulence dominated by ion acoustic wave 
fluctuations. 

Theory 3, the full Vlasov DIA, C~5~ is so complex that it has not been 
applied in detail to the ion acoustic turbulence problem. Polarization terms 
complicate both the response e n~ and the incoherent source term introduc- 
ing significant differences from Theories 1 and 2. Some aspects of this 
theory will be discussed below in the context of the stability of Langmuir 
waves. The theoretical foundations of the complete Vlasov DIA make it 
attractive and a challenge for further study. 

3. S T A B I L I T Y  OF ION A C O U S T I C  T U R B U L E N T  S T A T E S  TO T H E  
E X C I T A T I O N  OF L A N G M U l R  W A V E S  

In the Introduction we mentioned the current interest in plasma 
astrophysics in the stability of states of ion acoustic turbulence to the 
excitation of Langmuir waves. It is not surprising that this stability 
depends on certain detailed properties of the ion acoustic turbulence, even 
though this fact has often not been carefully recognized in the literature. 
The main conclusion of our work is that Langmuir waves are stabilized 
under a wide range of conditions by resonant or nonresonant decay 
interactions which scatter Langmuir waves into another wave-vector state 
by interaction with an acoustic wave. 

The theory of the coherent dielectric response of Langmuir waves is 
formulated in Section 3.1. The destabilizing contribution first proposed by 
Tsytovich, Stenflo, and Willhelmsonn (5} (TSW) is derived and shown to 
result from the anisotropy in the turbulent state between positive and 
negative phase velocity ion acoustic waves. 

The decay processes arising from the polarization terms in the 
coherent dielectric response are considered next. For sufficiently weak 
levels of ion acoustic turbulence, as for example in the early developing 
stage, the weak turbulence theory can be used for this calculation, and it is 
found that the coherent response of Langmuir excitations is generally 
stable because of relatively strong resonant or nonresonant decay interac- 
tions (L ~ L ' +  s'). For the Horton-Choi spectrum (3) generated by a drif- 
ted distribution (constant current) it is easily seen that resonant decay 
processes dominate and stabilize the system against the possibly destabiliz- 
ing effect of TSW. For this spectrum the resonant decay is not allowed for 
Langmuir waves of sufficiently low k but it is found here that nonresonant 
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decay processes are still sufficient to stabilize the system. These non- 
resonant processes in the weak turbulence regime depends on the damping 
rate of ion acoustic excitations in the stationary state (or their growth rate 
in the case of evolving turbulence). Strong turbulence effects considered 
within the DIA algorithm are considered here for the first time and shown 
to increase the stability of the coherent response of Langmuir waves. 

The global stability of Langmuir waves is considered in Section 3.2 in 
a wave-kinetic theory which accounts for the potentially destabilizing scat- 
tering-in effects of the decay interactions. Resonant decay interactions 
strongly couple Langmuir waves with phase velocities destabilized by the 
TSW effect to opposite signed phase velocities, which are additionally 
stabilized by this effect. Therefore the net effect of the wave kinetics is a 
strongly reduced growth rate due to the TSW effect, which can easily be 
stabilized by relatively weak nonresonant processes that can scatter 
Langmuir waves into regimes of shorter wavelength where they can be 
stabilized by Landau damping. 

We will emphasize the stability analysis of the ion acoustic turbulence 
states generated by a constant current, drifted Maxwellian distribution. 
This is the case treated in detail by Horton and ChoiJ 3) The spectrum I~,, of 
electrostatic fluctuations is peaked for k' vectors in the direction of the drift 
velocity u and is cylindrically symmetric about this directions. Spectral 
shapes for this case are shown in the articles by Horton ~1) and SlusherJ 2) 
Simulations ~'3'4~ show that the temporal development of the turbulence 
may be pulselike with the level of turbulence growing to a maximum and 
then decaying because of fast ion acceleration and at long times reaching a 
lower quasistationary level. 

3.1. Coherent Response 

The stability of the ion acoustic turbulence system to the coherent 
excitation of Langmuir waves by an infinitesimal coherent source at the 
Langmuir frequency can be studied by investigating the roots in the com- 
plex o~ plane of the renormalized dielectric response, end(k, c~), which was 
discussed in Section 2. We base our calculations on the direct interaction 
algorithm, which leads to Eq. (2.3) and which reduces to ordinary weak 
turbulence theory when end(k-k') is replaced by the linear dielectric. This 
renormatization of en~(k-k') plays an important role in the stability 
calculation for higher values of the ion sound turbulent energy His; the 
inclusion of these effects is necessary to extend the results of Ref. 9 to 
higher values of W s. 

The turbulence renormalized Langmuir frequency ~o~, ~ and damping 7~, ~ 
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can be found from the zeros of the dielectric response: e~l(k, co{', 1 -- i7~ ~) = 0. 
If we assume 1~,11 ~ Icoi',ll we find in the usual way Re c"l(k, cot, 1) = 0 and 

7~, ~ = 8e n~ (k, co~l) t Im enl(k, CO~I) (3.1) 

In using this formula we will make the approximation 

~enl/(~co "~ (~el/~co ~--- 2cop2/co 3 ~ 2/% (3.2) 

Near the Langmuir zeros we are then assuming that e"~(k, co) has the form 

9 
e,l(k, co) = -  (co _ co~l+ i7~,') (3.3) 

cop 

In our work we will explicitly neglect the renormalization of the 
Langmuir frequency and set co~,l-"~ co~. This will be checked for consistency 
at various stages. As in the linear problem the perturbed Langmuir fre- 
quencies will split into a positive phase velocity branch co~l= c01+, where 
co~+/k > 0 and a negative phase velocity branch co~l = co~, where co~-/k < O. 
When WS/nT~ 1 we can approximate o) 1-+ by the linear values 

co~+ = ++_(co2p + 3k2v~)m sgn k, sgn k - k.  u/lk" ul (3.4) 

where u is a vector in some convenient direction which we take to be the 
axis of symmetry of the ion acoustic turbulence (e.g., the drift direction); 
this then explicitly imposes the usual convention co~+k=-co 1-+ for each 
phase velocity branch. We then find that 7 "1 can be written formally as the 
sum of three terms corresponding to the three terms in Eq. (2.3). For the 
positive phase velocity branch we have 

.TSW .POL+ 
7~, j+=7~,+~/k  +6~k (3.5) 

Here 71 is the Landau damping (plus possible collisional damping) arising 
from the linear dielectric in Eq. (2.3); 67~ sw is the contribution from the 
direct third-order susceptibility e (3) and 6~ p~ is the contribution from the 
"polarization cloud" term involving e(2)e(2)/g~Ik,- 

The contribution 67~ sw was first discussed in relation to the stability 
of Langmuir waves by Tsytovich, Stenflo, and Willhelmsonn (5) and can be 
reduced to the expression 

87k Tsw e 2 
- 3  d3k' I aco' Im ZeIk', co') (3.6) 

COl 
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where ze(k', os is the familiar linear electron susceptibility 

4~e2 f ze(k, co) = - ~ - ~  dv(o~-k'v+i6)-lk'~(ff(v)) (3.6a) 

The ordering 

~>>(~' and co>>]k"vl, Ik'v], ] ( k - k ' ) ' v l  (3.7) 

was assumed in deriving this expression. Strong turbulence corrections to 
this formula will be discussed below. It is easy to show that 67x_ sw = 6f f  sw 
as always required. More importantly it can be shown that for the negative 
phase velocity branch the sign of the 37 xsw term is reversed: 

~/~'- = 7k - 67~ sw + 31~ ~  (3.8) 

At this stage we see that one phase velocity branch is destabilized by the 
c57vsw contribution while the other is stabilized. Equation (3.6) can be 
made more specific by introducing the following ansatz for the frequency 
dependence of the ion acoustic potential fluctuation spectrum: 

I~/, + I I~,  I 
(o~_~,+)~+(~+)~+I~, (~_~V)~+(v  ~ )~ (3.9) 

where I~, + are the k space spectral densities of the electrostatic potential 
fluctuations for positive and negative phase velocity ion sound waves in the 
turbulent system. Here c~, -+ = + Ik[ c~ are the sound wave frequencies of the 
two branches and ~,-+ the corresponding growth rates corresponding to the 
zeroes of ~l(k, ~o~,• + ivy,• Note we always have the convention 
a)~-+k = --CO~, -+. With this ansatz and assuming [co~,[ >> IvY, • ] and Ivy,• I ~kv~ we 
can carry out the ~o' integration in Eq. (3.6) to obtain 

b/TSWa~[, ~e2 ~ (k �9 k')k____~D ( ~v~"+ a~,,v[': / 
- _  - 3  ' + (3.10) 

where Vk~e+ is the electron contribution to the ion acoustic growth rate 

~-+ 1 k 2 
c~ + = ~ ~--~ Im z~(k, co~ -+ ) (3.11) 

It is easy to see from Eq. (3.7) that if ( f ~ ( v ) ) =  ( f ~ ( - v ) )  that 37 xsw 
vanishes when P + =  P since vf,, + = vf,:-. More significantly for a drifted 
Maxwellian distribution we have for T~ >> T~ 

V[-+/O)~ • = ( T c / 8 ) l / 2 ( k  �9 u - -  6o~ -+ )/(kv~) ( 3 . 1 2 )  
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and for u>>c~ we see that vf,-/co~,- = v~,+/oJ~, + and both terms in Eq. (3.10) 
are destabilizing for positive Langmuir phase velocities. However, in the 
drift case only positive phase velocity ion acoustic waves will be excited 
and we will have I~, + >I~,-, which is also the most unstable case for the 
symmetric velocity distribution. 

For the remainder of this article we will assume maximal anisotropy 
and take I~,-=0. In this case when the integral of the first term in 
Eq. (3.10) is positive then Langmuir waves with positive phase velocities 
will be destabilized by @TSW. 

It can be shown that Eq. (3.9) is a valid representation for the spec- 
trum both in the growing stage of the turbulence and in the quasistationary 
state where ~3,I~, +- 4 2  I~,+1 I~• in the latter case v~, ~< 0, corresponding to 
stable ion acoustic excitations. For the Markovianized theory which we 
will use below to be valid in the growing state it is necessary ~ that 
~S K vk,rc~ 1, where % is a spectral correlation time r ; -1~3 [ k ' - k ]  ]dk'] ),2COp, 
where 2D = k3 ~ is the electron Debye length and ]Ak'l is the width in wave- 
vector space of the ion acoustic spectrum. The theories used here are not 
generally valid for coherent ion acoustic waves with d k ' =  O. 

An estimate of the magnitude of 67 Tsw can be obtained from the 
following formula: 

6?TSW W ~ 1 / v e /  
COp -~ --3(k',~D) k2o(lcos 0l ) n T  1 + ((k'2D) 2) ~-~ (3.13) 

where we have used the definition of the total energy in sound waves 

W s - e 2 (. 
-~  j d3k ' I~,[1 + (k'),D) 2] (3.14) 

n Te 1 ;  

and the angular brackets indicate a suitable average over the spectrum with 
cos 0 -- ~. 1~'. [For  most of the estimates made in this article we will ignore 
the (k'2D) 2 term in the integrand of Eq. (3.14) since k '2D< 1.] 

It is useful to compare t, he contribution 6y~sw with the linear Landau 
damping 7~ r (,Op = (~ /8 ) l / 2 (kD/k )3  exp [ - (kZ/2k  2 + 3/2) ]. The combination 
/i--~.TSW for positive phase velocity Langmuir waves reaches its k --t'- uy k 

maximum negative (unstable) value at k =  ks, where 0.2 < ks;t o < 0.3 for 
W S / n T < l O  -2, say. For larger k2D Landau damping dominates and 
stabilizes the system. This is shown schematically in Fig. 1. 

The role of the polarization contributions ,~,,POL• has been of some 
v / '  k 

dispute in the literature. 3 In a previous paper (9) we showed that for the 

3 M. Nambu c2~ claimed that the polarization terms produced a strong destabilizing con- 

tribution which was subsequently shown to be zero in Ref. 9 and by A. Hirose3 21> In Ref. 9 a 
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c,o 

~ :i 
l , ,,"/t (kI~D) 

0,1 0.2 0.3 0.4 k~o 
Fig. 1. Linear Landau damping, 7~, plus the "turbulent bremsstrahlung" rate, 67krsw, as a 
function of k2e showing the region of potential Langmuir wave instability for k2D<0.3 and 
the region of strong Landau damping for k2D>~0.3. 

growing phase of ion acoustic turbulence, where the weak turbulence 
approximations are most likely to be valid, resonant and nonresonant 
decay processes--where a Langmuir  wave decays into another Langmuir  
wave by emitting or absorbing an acoustic wave- -a re  stabilizing for 
Langmuir  waves and always dominate the TSW destabilizing process. The 
polarization contribution can be calculated as in Ref. 9 when k, k '~  kD to 
give 

t~) POL-+ 1 e2 t" f 1 
~Op - 2  T2 J d3k' j d~~ ([ " [")2 Im e~'(k", o~ ") (141~,,o~,) (3.15) 

where k" -= k - k '  and co" - ~o - co' = ~o~ -+ - iTL -+ - o)'. In this article a single 
prime will always denote ion acoustic wave vectors and double primes 
Langmuir  wave vectors. The co' integration can be carried out using the 
ansatz (3.9) with ! ~ , - = 0  to give 

t~ POL,tT/ l __  ~ f d3k , ~ "  7k /COk - -  /", Mk,k" 
tT" 

subdominant destabilizing contribution arising from the polarization terms was calculated 
and called fy{,; this was dominated by the nonresonant stabilizing contribution 67~ g arising 
from decay interactions. We have subsequently found that 6y[=0 ,  which makes the 
Langmuir waves even more stable than we originally thought, the only remaining destabili- 
zing term being 57~ -sw arising from the direct e 13) term. We thank Dr. Nambu for pointing 
out our error; the correct result 57{ , = 0 strengthens our conclusion that Langmuir waves are 
stabilized by nonresonant decay process. J. Kuipers 122) considered polarization effects but did 
not consider the competitive role of the nonresonant decay processes. 
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where 

o,o,, 1 e 2 
Mk,k,, ~ 4 r 2 (~. ~,,)2 i~+ cop Faa" (Aco~ ,,)2 + (F,  ,,)2 (3.16) 

and where a, a " =  _+ signify the sign of the phase velocity for Langmuir 
waves with k, k", respectively, 

Z ] c o  crcr " ~ c o ~ I ~  __  r , ~ n l a "  __  r ,~s  
~ k "  ~ k '  

F a a  " = 3 / ~ l a  _[_ ~ , n l a "  ~_ a s  
[ k "  / v k ,  

(3.17) 

Here we have explicitly included the contributions to the co' integration 
from both the positive and negative phase velocity zeroes of enl(k ", co"). 

Because of the occurrence of 7 n~'~ in the DIA expression for 6;POL the 
relation [see Eq. (3.5)] ?nl = 7t + @Tsw + 6yPOL{Tnl } is actually an integral 
equation for 7 n~. 

The occurrence of 721,~,, in the expression (3.17) for F ~~ requires 
special attention for broad ion acoustic spectra, such as in the Hor- 
ton-Choi theory, wher e k'2o and therefore ]k"2D[ = [ k -  k'[ 2D can be large 
enough to be in the strong Landau damping regime. For Ik"l 2D>kc2~,  
where 0 .4>k ,2~>0.3  the linear Landau damping ?~,,, becomes so large as 
to overwhelm the other terms in (3.17); i.e., for Ik"l>kc we have 
3 nl  ~ ~ s  )'k,,-?~,,~>7~, ~ or vk,. We also find that when k">kc then 7~,,~>Aco ~ 
(explicit expressions for the mismatch are given below); thus the resonance 
function in Eq. (3.16), copF~"[(Aco~")2+ (F~~ -1-~cop/Tl,,, which is 
relatively small compared to the value when ]k"] <k~,. We will take this 
resonance cutoff effect into account by restricting the region of integration 
over k' to R: 

R: ] k - k ' [  < k  c (3.18) 

If the ordering in Eq. (3.7) is strictly observed then this restriction is 
unnecessary. But for spectra arising in the drift-generated ion acoustic tur- 
bulence such as Horton-Choi we must violate this ordering. In addition to 
the effect on the polarization term considered above there will also be a 
contribution from the direct (e(3)) term in Eq. (2.3) which arises from the 
c o " = k " . v  resonance. This contribution corresponds to a kinetic effect 
which can be described as induced conversion of Langmuir waves into ion 
acoustic waves by scattering from electrons. For a mean distribution 
<if(v)> which has negative slope for v>  D e (e.g., a Maxwellian) this con- 
tribution will be stabilizing. We will not give the explicit formulas for this 
contribution here but rather concentrate on other stabilizing effects which 
arise for k'2e,~ 1. Thus in Eq. (3.6) or (3.10) we will take the k' integration 
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over the restricted region R. It is important to keep in mind, however, that 
for a broad spectrum where km~x2D~O(1) there exists this additional 
stabilizing effect. 

3.1.1.  R e s o n a n t  D e c a y  C o n t r i b u t i o n s .  The resonant decay 
contributions will be important when ion sound wave vectors k' which 
satisfy the condition Aco~"= 0 fall within the support of the ion acoustic 
spectrum. Since ICOk,l<copS the resonance condition requires COkl~--COk",~" 
implying Ikj ~-Ik"l, and because of the factor (~:. ~,,)2 either forward or 
backward scattering is favored. Forward scattering implies Ik'[-~ 0; because 
the phase volume for k' -~ 0 is so small and because the spectrum I~:, cuts off 
for small k' forward scattering is suppressed for k > k ,  = ~(me/mi)kD,.. In 

~ co ,, backscattering k " =  ~ - k ,  so to ensure co k = we require that a " =  
corresponding to a backscattered wave with negative phase velocity. Thus 
resonant decay couples a positive phase velocity Langmuir wave with a 
negative phase velocity Langmuir wave. This fact has particularly important 
consequences in the wave-kinetic problem considered below. 

3.1.1o. Weak Turbulence Formula for Resonant Decay. The 
familar weak turbulence expression for the resonant decay rate is obtained 
when the spectrum I~ + is wide enough in k' space that the resonance 
function in the integrand of Eq. (3.16) can be replaced by a delta function. 
This condition can be expressed as 

F + ~ < 1  (3.19a) 

where ~,. is the spectral correlation time 

OAt~ IAk'l " 3 Zc~-  Ok' - ~ l Z k ' ~ ' - 2 k ' - k , I  Izlk'[)~ZCOp (3.19b) 

where IAk'l is the width of the spectrum I], +. Then we can approximate 
6;~,oi~ as 

.RES 1 fR d3k' ~", ) 2 e2 6Y~~ 6Zk =~ (~" -~5I~,+coprc6(ACO+ ) (3.20) - 

where 
Ace+ _ = co~ + - co~7, - CO]~, (3.20a) 

The condition Ace+_ = 0 reduces to 

23co+ 
- -  - (2k. k ' -  ( k ' )2 -k ' k , )  22 = 0  (3.21) 

3 COp 
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2 1 / 2  where k.-~(me/m~) kD~. Equation (3.20) is valid provided the resonant 
values of k' fall within the spectrum 

k~nin < 2k. ~' - k ,  < Ak' = min(k;, km~) (3.22) 

where k~i,, kma~ are, respectively, the maximum and minimum wave num- 
bers of the spectrum I{ +. 

Because of the delta function in the integrand of Eq. (3.20), 6f~ Es is 
quite sensitive to the shape of the spectrum If,,. We can evaluate Eq. (3.20) 
approximately in several cases to find 

. RES W" kk2D 
7k 7r ,,~- Z(Ak'/2k) (3.23) 
~ 6 nT (Ak') 3 

Here Ak' is the smaller of the maximum wave number in the ion acoustic 
t >." t spectrum or the cutoff wave number k'c, and we assume k~ax, kc >> km~, the 

lowest wave number in the spectrum. When k',. < k'~x then W ~ is replaced 
by W~ = (e2/T 2) ~R d3k' I~,. 

s _ _  s ! s (i) For  a one-dimensional spectrum I k , -  Ik;6(ky)b(k ')  if Ik; is a 
smooth function of k" we find Z(y)=2y  2 if y=Ak ' /2k> 1, and Z ( y ) = 0  
otherwise. 

(ii) If we assume that the angular dependence can be factored, (31 
I~,,=I~k,iP(cos 0), where cos 0=~' .  fi, then for a broad angular spectrum 
where (coS0)mi,~-0 we find Z ( y ) = l  for y > l  and Z(y)= 
(�89 - 2 y 2 )  3] for y <  1. 

(iii) For  a narrow angular spectrum of the factorable type considered 
in (ii) where (cos 0)mi=---1 we find Z(y)= 2 for y >1  and Z(y )=0  for 
y < l .  

In all cases Z > O ( 1 )  for 2k<Ak'  and is smaller or zero for 2k>Ak'. 
With these estimates and the assumption that .nl ~ .RES.-. Yk ~~'~k ~I67TSWI the con- 
dition for the weak turbulence formula leads to Fro ~< 267~ESz,.~ 1 or 

W" 9 
- - 4 -  (3k'2p) 4 Z I (3.24) 
rtTe 

for k > k,/2. 
For the modified Kadomtsev spectrum calculated by Horton and 

Choi ~3/ we have k ' a x 2 D < l  , (k ' 2D)~0 .3 -0 .5  and the lower cutoff deter- 
mined by small angle scattering of electrons off ion acoustic waves in 
k'min2D~(WS/nT). The condition (3.22) is well satisfied by k near the 
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fastest-growing mode kr for which 7~ + 6 : [  sw has its most negative value. 
Using Eqs. (3.13) and (3.23) we find the ratio 

6~TS____~ w ,,~ 67TS___~W I 18 (Ak'2o)3(k').o) (ve/co,)(ICO s 01) (3.25) 
- z 

which is generally much less than unity. Until further notice angular 
brackets ( . . . )  will denote some appropriate average of the indicated quan- 
tity over the spectrum I~ +. Thus the stabilizing rate for resonant decay, 
when allowed, will overwhelmm the destabilizing rate for the TSW process. 

For  small k where 

2k < k~nin + k ,  (3.26) 

resonant decay is not allowed, while 6 ~  "sw is small but nonzero. In the case 
of a spectrum for which 2ks>km,  x (which is not the Horton Choi case) 
again resonant decay is not allowed or is weak. For  these cases we need to 
consider the contribution from nonresonant decay processes, which we do 
in Section 3.1.2 below. 

3.1.1b. Strong Turbulence Limit for ,~.,poL For a narrow ion ~YR " 
acoustic spectrum where IAk'l 2D~ 1 the weak turbulence condition (3.24) 
may be violated. The strong turbulence regime results when the resonance 
width F + exceeds the maximum mismatch Ace + . Then if we assume 
that F + ~-27 n~+ >> I Ace+ I, where 7 "1+ is weakly dependent on k, and that 
7 "1+ .-~67 r~ we find the simple equation 

~nl+ c~TPOL+ 1 e 2 fn  
091 091 4 T --5 d3k, (~.~, , )2  i~+ c0.___s 7n I (3.27) 

The contributions involving A~o + + for sgn k" < 0 and Ace + for sgn k" > 0 
will be smaller by a factor 7nl/ogp and can be neglected compared to the 
contributions from 09 + for sgn k" < 0 and from ~o + + for sgn k" > 0 which 
combine to give Eq. (3.27). 

This equation has the simple solution 

7 nl 1 ~ e 2 1/2 
f d3k, (3.28t 

It can be shown by continuity arguments that only the positive square root 
is permissible. 

The k' integration is easily estimated to give 

0)~ 1 2 ~ ~C0S2 O) (3.29) 
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and in this case the condition F + -  ~27"L> IAm-+l becomes 

1 W  s 
- - -  (cos 2 0 )  > 9(k'a• IN - k'l ~ D )  2 (3.30) 
8 nT 

which is essentially the converse of (3.24). This may be satisfied for 
W~/nT~ 1. This asymptotic strong turbulence result shows that the stabili- 
zing effect of @~OL is maintained for larger values of W~/nT. In this 
asymptotic case 

~pw ~pw I 
~_ c57PO------~l~(k2D)fk',~D)(W'/nT)'/2<ve/mS)~l (3.31) 

i &~---r 
as long as W'/nT< 1. 

In this strong limit it is easily verified that the shift in the Langmuir 
frequency is still negligible: We find (m~, ~ -  co~)/mp ~- (W'/nT)l/2~zJm)/[', 
which is is small and weakly dependent on k so differences in Langmuir fre- 
quencies such as occur in Am are not affected. 

3.1.2. Nonresonant Decay Contributions. An intermediate 

case occurs when Am § = 0 cannot be satisfied for k' within the spectrum 
and yet ]Am +-I~> F+ over the spectrum. In this case we can approximate 
~ POL,c~ by 

(~IPOL,a ~ N R , a  1 e 2 ( '  
,k  ~ ~+k JR d 3 k ' E  (~" ~,,)2 i~+ COp Fr;~" ( 3 . 3 2 a )  
m~ m~ ~-~T o,, (AU+') 2 

6/~ R,+ 1 e 2 f~ 
m~ ~---3 T - 3  ~, d~k' (~ " ~,,)2 

x I'k + [ c~ k") C~ O(sgn k" ) ]  (3.32b) h(Am + )2 0(-sgn + ( - G ~  P 

where we have noted that in order for the Langmuir frequencies to have 
opposite signs in Am + -  we require s g n k " < 0  and in Am ++ we require 
sgn k " >  0. The remaining portion of k" space yields contributions smaller 
by O(k')~D) 4. For the low-k nonresonant regime of inequality (3.26) dis- 
cussed above we have Ace + =Am + + "-~3mp(k'J.D) 2, while for the high-k 

t ~ q- + nonresonant regime discussed below 2k>>km~x~k,, Am =Am + -~ 
3mp(k 'k ' )  22. In both limits Am is independent of k , ,  which implies that 
6)~POL + .POL-- 6;~k . If we also assume that @NR+ ~> 17~ + @TSWl, then 721+ ~- 
7~ I- ~ 67 NR+ and we can write 

y~r e NR+ 1 f Free 
o ' &  ~--4 JR dBk , (~. ~,,)2 if,+ (Am) 2 (3.33) m~-  G 



804 DuBois and Pesme 

where now we have to a good approximation F-~2~ 1+ -[-~2~!,+ -[-[V~,[. If the 
weak turbulence condition is satisfied: 

1 e 2 (02 , .1 W s 2 
*t 2 s+ <COS20 > COp '~1 (3.34) 4 r2 f d3k' ( ~ '~  ) Iw (-~-~)2 -4-ff~ ((zlco)2> 

then the term proportional to ~)~1+ on the right-hand side of Eq. (3.33) can 
be neglected in comparison to 7~, 1+ on the left-hand side. When k " =  k -  k' 
also lies in the nonresonant region and 7~,!,---7] l we can also neglect 7~,!, 
under the same conditions. But when 2 k " > k ' ~ n + k ,  we should 
approximate 7~,!, by ~ .RES ~'k" [Eq. (3.23)] which is much larger than 67wNR. 

For evolving ion acoustic turbulence we may have Iv~,,I > ~,!, for k' in 
the region R. The total ion acoustic growth rate g]~ is the sum of an electron 
part and an ion part: ~ =  "~ -~ -e V k + V k. For evolving turbulence v~ is essentially 

e e ~ -i is much smaller the linear growth rate v~, where v~/cok~ O(U/Ve), while v k 
than v~. Thus if WS/nT is sufficiently small so that 7~!, "~ 7~,, [use Eq. (3.23) 
for 67~,, Es] we have the weak turbulence estimate given in Ref. 9: 

~,,POL + ,NR+ s lk t~Yk  ~ !  <COS2 0> ( "gk' -{- ~)1" > (3.35) 
co~ - col - 4  ((ACO);/CO~) cop 

and 

c57~sw ~12 k <(A(,o)2> <re) <IGOS 01 > 
] aT~o--------C k, 4 < y~, _[_ ~)1,, > <COS2 0> (.Op 

(3.36) 

It is useful to consider the high- and low-k nonresonant regimes 
t separately. In the later 2k,~kmin+k , and (Aco)~,-'3cop(k'2D) 2. From 

Eq. (3.36) we find 167TSW/67POLI ,r 1, i.e., the nonresonant decay scattering- 
out rate dominates the TSW term so long as k / k , <  1, { k ' 2 D ) ~ l  and 
(ve)/{V~,,+ y~,,) is not tOO large. For developing ion acoustic turbulence 
considered in Ref. 9 we have ( v e ) / ( v ' ) ~ - O ( 1 )  since the nonlinear 
saturating effect of induced scattering on ions has not yet developed. 

For stationary ion acoustic turbulence {v s)/{v e) can become much 
less than unity because the growth rate v e is nearly balanced by the ion 
linear Landau damping g[, on the ions as in the Horton-Choi improved 
version of the Kadomtsev theory. (3) However, note that (ve)/(7~,,)--- 
(U/Ve)(k,2D)(mjmi)m(7~,,/cop)-i is not particularly small even considering 
the cutoff at k " <  ke, which allows only 7k,,/cop < 1. For stronger turbulence 
levels the renormalization of 7k,, cannot be neglected. For sufficiently strong 
WS/nT [as determined by Eq. (3.22)] we have 7~,!,~ RES l 

- -  67k" >~Tk" in the 
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expression for F in Eq. (3.33). We then have the estimate [-still assuming 
(3.33)] 

@k p~ 3e~ R+ 1 W s (COS 20)  (37~,, zs) 

co~ -- e~ --4 nT ((Aco/cop) 2) COp 

7r (WS) 2 (cos20)  ( k " ) k ~ z  (3.37) 
~77 ((k%) 4) 

where we have used Eq. (3.23) to obtain the second line. The condition 
67~Ys>> ~{, is found to be satisfied when the estimates for ~" discussed at the 
end of Section 2 are used. The comparison with @TSW is 

g)y'~sw 67~sw 162 k (kt,~5)(Ak'/~D) 3 (Icos 01) (v e ) 
o- - -c  - (k"> (WS/nT)Z (cos20 > _ _~-; (3.38) 

Here we see that the nonresonant decay process is again stabilizing (i.e., 
16TTSW/@POL t < 1) when 

~ 162 k ( ) (k'2D)4>> >> - - ( k ' ) ~ o ) 5 ( A k ' 2 D )  3 ve Z -1 (3.39) 

The left-hand side of this inequality is the weak turbulence condition (3.34). 
These inequalities are readily satisfied since [k / (k")]  (ve/COs) ~ 1. The con- 
dition Aco>>F,-~@R,, Es must also be satisfied and yields the condition 
(54/~)(k'2D)(k2D)Z(Ak';tD)>>W~/nT, which is compatible with the con- 
dition (3.34) since k < k' in the regime under consideration. 

We have shown that the scattering-out rate for resonant or non- 
resonant decay processes dominates the destabilizing TSW term. Thus from 
the point of view of the coherent response, Langmuir waves will be stable 
for a spectrum such as that of Horton and Choi. In Fig. 2 we schematically 
show the relation of the resonant and nonresonant decay regimes to the ion 
acoustic spectrum I~k %, evaluated at k ' =  2 k - k , ,  and the growth rate 
term 7~+ ~7 Tsw. An important characteristic of this spectrum is that 
k'ax2D>kf2D, where kf is the wave number where 7~ +'~-/k'fsw is most 
negative in value. 

Another possible spectral shape, in contrast to the Horton-Choi spec- 
trum, is shown in Fig. 3. Here the high k' end of the spectrum is cut off for 
k'max2D < 2kf2D~ 1. This might occur if the ion acoustic turbulence is 
driven by a beam distribution rather than a drifting Maxwellian. In this 
case the region of nonresonant interaction is at higher values of the range 
wave numbers for which y~ + 37 Tsw < 0: 

k~nax < 2k - k ,  ~- 2k 

822/39/5-6-23 
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2 k - k ~  /" ~" ,,,/ 
" ~ , - "  / "  ~,~, 

i / /  ; +d TSW / ~ ,  
/ / Yk Y k " " - -~  / ~"~ 

% , 

- ~ R E S O N A N T  REGIME . . . .  STRONG LANDAU DAMPING 

\ _ _  
NONRESONANT REGIME 

I I I L ~. 

0 0.1 0.2 0.3 0.4 ,,,,L'~ D 

Fig. 2. Schematic representation of the relationship of the ion acoustic spectrum I~k_k. and 
the potentially destabilizing (i.e., negative) contribution, 7~ vsw + 67k , to the Langmuir  damping 
rate. In the region of k2 D labeled "resonant regime" the positive resonant decay damping 
67~ Es [Eq. (3.20)] stabilizes Langmuir  Waves against the relatively small negative damping 

1 T S W  7k + 67k . In the low k region labeled "nonresonant  regime" the nonresonant  Langmuir wave 
damping 67 NR [Eq. (3.33)] stabilizes the Langmuir waves, and for k2D>0.3 the linear Landau 
damping stabilizes the Langmuir  waves. This figure applies to the case ion acoustic turbulence 
driven by a relative electron-ion drift velocity. 

7 TM ~ I s 
[ / ~ / "  2kk,  

/ I 

, , //.. / I 
I I / ! . , sw 

+ ~  k / / 

�9 ~'~-RESONANT-,:- NONRESONANT-~I~--STRONG LANDAU DAMPING~ 

X NONRESONANT 
I i i i 1~ 

0.1 0.2 0.3 0.4 k t  9 

Fig. 3. Schematic representation of the relationship of the ion acoustic spectrum I~k k and 
the potentially destabilizing (i.e., negative) contribution, 7~ Tsw + 67~ , to the Langmuir dan]ping 
rate. The comments in the caption to Fig. 2 apply here as well, except in this case there is a 
nonresonant  region at kmax2o<k2DGkr2D, where again the nonresonant  Langmuir wave 
damping 67~ R [Eq. (3.33)] stabilizes the Langmuir  waves. This figure applies, for example, to 
an ion-beam-driven ion acoustic turbulence. 
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and (Aco/cop)  ~ 3(k- k') 22. From Eq. (3.36) we find the nonresonant, weak 
turbulence formula 

sw] 98 k (Icos01) 
6y~o-------~l ~--~-~** (k' 2 (Vs) ( cOS2 0) (3.40) 

To evaluate this case we again need to understand the detailed properties 
of the ion acoustic turbulence. One way to obtain a spectrum such as in 
Fig. 3 would be with a warm ion beam with velocity vB>c s and beam 
width AvB. Then Ak '= lk ' ax -kmin l~ - ( k ' )AvB /vB .  In this case in the 
developing stage the electrons have a (stable) Maxwellian distribution, 
where v2-~ - [0 r /8 )me/mi ]  1/2 co~. Equation (3.10) for 37 wsw then predicts 
that Langmuir waves with negative phase velocities are destabilized by the 
anisotropy of the ion acoustic spectrum, I~ +,>I~-. Now, however, since 
vS= re+  v i must be positive in the growing stage of the ion acoustic tur- 
bulence, we must have vk-S ~_ vk>i IV~l,e. vki is the positive-valued ion Landau 
growth rate of the beam instability. Thus in the developing stage for this 
case  I~ve)/(vS)l ~ 1 and Eq. (3.40) predicts wsw Poe 13~& /6~k 141 so Langmuir 
waves are again stabilized by the nonresonant decay process. In the long 
time limit of the ion beam instability we expect that the growth rate V will 
be reduced by quasilinear effects and ~~ v~ /qv ) v~--, O(Iv~l) so that ( e)''~s)~o(1 
at long times. This is an example where the TSW effect is potentially 
destabilizing for a Maxwellian distribution of electrons provided I~, + >> I~-. 
Again for the range of k and k' values typical of Fig. 3, Eq. (3.40) predicts 
I67TSW/67POLI~l and Langmuir waves are stabilized by nonresonant 
decay interactions. The naive view (23) that one can ignore the competing 
effects of decay processes in this case is seen to be incorrect, and at least in 
the case just discussed there is no viable "plasma maser effect." 

These applications do not exhaust the possible manifestations of ion 
acoustic turbulence. The formulas given above are applicable for testing the 
stability of Langmuir waves in other cases. The main point we wish to 
make is that even nonresonant decay interactions can be strong enough to 
stabilize the Langmuir waves against the destabilizing effects of .TSW 6~k . For 
any particular manifestation of ion acoustic turbulence, calculations of the 
competing effects of decay processes must be made. 

3.2. Langrnuir Wave Kinetics 

The stability calculation based on the coherent nonlinear dielectric 
response end(k, co), which has been the approach of all previous work on 
this subject, is quite incomplete. This approach calculates the mean (i.e., 
ensemble average) response of the ion acoustic turbulent system to an 
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infinitesimal coherent (i.e., nonzero mean) source or signal with wave vec- 
tor k and frequency o J -  o9[,. As we know from the considerations in Sec- 
tion 2, for example, the response of the fluctuations of the Langmuir fields 
also involves the incoherent nonlinear source terms--i.e., the terms on the 
right-hand side of Eq. (2.2). In the case of the decay processes these terms 
involve decay processes which scatter-in Langmuir waves from some wave 
vector k" to the wave vector k whose stability we are investigating. This 
source term is then potentially destabilizing. The coherent response con- 
sidered above always produced a damping or loss since it takes into 
account only the inverse process of scattering out from wave vector k to 
wave vector k". Thus the condition 7~, 1 > 0 is only a necessary condition for 
stability of the fluctuations but is not sufficient because of the scattering-in 
effect. (24) The kinetic equation for the Langmuir wave intensities can be 
derived using standard methods from Eq. (2.2). We define in analogy to 
Eq. (3.9) the Langmuir wave intensities (or actions) for positive and 
negative phase velocities for Io91 ~o9~. 

/ L  + ~ n l +  L - -  n l -  
( fb 2 , o ) = ,  , , , ,k  I~ 7k 

[og--ogkl+)2q-[Y21+)2q- - -  k .I t Y k  ' (co o9~I-~2~ . .1-)2 (3.41) 

where again we take og~l_+ as given by Eq. (3.4). The kinetic equations for 
the slow temporal variational I~ -+ are given by 

nl,~ Lo L~ (3.42) a,I~ ~+27k I~ = S  k 

for cr = + or - where the incoherent source term is given in the same 
approximations which lead to Eq. (3.16) by 

L a -  1 ~ ]{/[a~r" I L a  " S k - -  (2o9k) j d 3 k  ' (3.43) ~,~ k,k,, ~k,, 

~rff" where Mt,k,, is given in Eq. (3.16), where we showed 

6~. P O L , a  

yk f d3k , - -  M k , k , ,  o9~ ~ ~'~" (3.44) ~,, 

(We note that there are no incoherent source terms related to the coherent 
process 67TSW.) If we write 7 hI'" according to Eqs. (3.5) and (3.8) it is useful 
to write separate equations for + or - phase velocities 

+ 2(7~ + 6?~ sw + 67 P~ 1~ + f d3k , lt,c+o"rLo" (3.45a) ~,I~ + ~'* k,k" * k" 

0,J~- + 2(y~ - 67~ sw + 67~ ~ ) 1~ = f d 3 k  , .aar-~"tL~".. k.k" *k" (3.45b) 
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Here we have explicitly accounted for the fact that O~v k "  .TSW+ = 
,~ .TSW = 67 Tsw and a summation over a" -vy~ = + , -  is implied on the 

right-hand sides. 
The condition of conservation of plasmons in the decay process is 

expressed by 

f d3k -),~ POL,a/Lo- __ ~ T k  "k - f  d3k f d3k . . . .  ,, L~" Mk,k,,Ik,, (2egk) (3.46) 

which follows from Eq. (3.44). Thus we know that the source terms are the 
POL4r La ~.POL same order as 67~ I~ so that if 6yk is the dominant rate the source 

terms will also be large. If the source terms have a strong coupling between 
+ and - (or - and + ) phase velocities then the phase velocity direction 
destabilized by 67 Tsw will be strongly coupled to the phase velocity direc- 
tion stabilized by - 6 7  Tsw and the destabilization effect is greatly reduced. 
Effectively this coupling reduces (~)TSW to  67TSW• (~TSW/(~)POL)~t~TTSW 

when the decay rate dominates. 
This effect is most easily calculated for the case of resonant decay 

when k ~  < 2 k -  k ,  < k~a ~. If we further restrict considerations to one 
dimension we find, using Eqs. (3.45a,b), (3.16), (3.20), and (3.23), 

f dk' M +-rE- ,~ .POCrL-- (3.47a) k.k" ~tk" ~ VYk / --(k--k,)  

f ' + I L+ A .POLrL+ dk M--(k_k.),k,, k" = V ? k  l k  (3.47b) 

and M + + = M~.k7 = 0 for resonant processes. Here k.k" 

~.POL ~ . e2 rs+ kD 
Y~ = 6 w P T ' 2 k - k *  12k---k,I 

(3.47c) 

-Ik_k, we have the coupled equations Then using ILGk k*)- L- 

0tlL+ +2(7~+ TSW .POL~,L+ 9,~'POL~L-- 
bTk + (~)~k ) I k - -  ~V~k l k _ k .  ~- 0 

(3.48) 
L c~eI~_k.+2(7 ~ k.__~.TSW ,~.POL XIL ~ ) . P O L r L + = 0  

V Y k - - k .  -~- VYk k . )  ~k k ,  - -  ~)~k l k  

Because only positive phase velocity ion acoustic waves are excited (by 
assumption), the resonant decay kinetic equations couple together only 
modes k and k -  k ,  with opposite phase velocities in one dimension. The 
dispersion relation for this set of equations is easily obtained: setting the 
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time dependence of I~ + to go as e -2st we find the most unstable root for 
k>>k,  to be 

s = + [(  foL)2 + 

07  T s w  1 (67/sw) 2 if ~ ~1 (3.49) 
- 7k  2 6f f~ 

We saw above that the last condition is satisfied in most regimes of interest. 
The stability condition now is 

~ !  ~ (.~ ,TSW~2/.~ ,POL 
l k  t~Zk I I ~  (3.50) 

so that at this level of approximation very weak Langmuir instability is still 
possible in principle if the linear dissipation were zero. However, the reduc- 
tion of the 61 [sw growth rate by a small factor Tsw POL 1~Tk /67k 141 allows 
stabilization by small collisional damping or other residual effects. For the 
fastest growing mode kf defined in Section 3.1 with respect to 7~ + 6~ [sw we 

TSW I have 67k i /Tki~O(1) so stabilization by the formula (3.50) is assured for 
this value of k ~ k f .  

If the relatively weak nonresonant processes neglected above are con- 
sidered we find that they are sufficient to stabilize against this greatly 
reduced "turbulent bremsstrahlung" growth rate. Such nonresonant terms 
arise, for example, from the contributions from Mk+k, + or M~,7 in 
Eqs. (3.44) and (3.45) which couple like sign phase velocities. These non- 
resonant terms provide access to regions of shorter wavelength where Lan- 
dau damping provides the ultimate stabilization of the system. As we saw 
in Section 3.1, the rates for the nonresonant decay processes usually are 
much larger than .TSW 6~k . The details of the calculations of the nonresonant 
contributions and the extension of these arguments to higher dimension 
will be given elsewhere. The basic physical arguments for the stability of the 
global wave-kinetic distribution of Langmuir waves hinge on the following 
facts: 

1. The rates for scattering-out and scattering-in due to resonant or 
nonresonant decay processes generally greatly exceed the destabili- 
zing rate 67 rsw. 

2. The scattering-out terms (i:e., the incoherent noise) scatter 
Langmuir waves into regimes of increased dissipation either by the 
coupling to opposite phase velocity waves whose stability is 
increased by 167TSWl or to higher k" waves where Landau damping 
is effective. 
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3.3. Renormalized Wave-Part icle Interactions 

The strong turbulence effects considered above involving the renor- 
malized dielectric response e n l ( k - k ' , c o - c o ' )  in Eq. (2.2) arise from 
wave-wave interactions. These produced resonance broadening effects 
which increased the rates for decay interactions which stabilized the 
Langmuir waves. 

The "turbulent bremstrahlung" effect giving rise to the destabilizing 
term 67~ sw involves a wave-particle resonance, co'= k ' . v  which occurs in 
the factor Im Xe(k', ~o') in Eqs. (3.6) and (3.7). Choi and Horton and others 
have shown that the weak turbulence expansion breaks down for ion 
acoustic turbulence levels where WS/nTe > me/m e. The primary effect which 
they considered is the turbulent broadening of the wave-particle resonan- 
ces. We have studied the renormalization problem using the DIA for- 
mulation of plasma turbulence theory--i.e., Theory 3 discussed in Sec- 
tion 2; this theory contains all the other proposed theories. 

The analysis starts from the general formula, Eq. (2.7), for the tenor- 
realized dielectric response. Since Langmuir wave-particle resonances are 
weak (co>>k-v) we can use the expansion of Eq, (2,10). From this we see 
that the weak turbulence expression for 61[ sw arises from the last term in 

e The renormalized TSW term Eq. (2.70), which is proportional to v b .  
involves only the first direct or nonpolarization term in Eq. (2.13) for e Vk,co. 
Without going into details we state the result that the renormalized limit of 
this term involves the completely renormalized expression for v e k,o~ as given 
for example by the second term in Eq. (B5) in Ref. 15. Using this formula 
we derive a renormalized expression for 5~sw: 

6 ~  sw 4~e 3 3 
-~---f-5,3 f d3k' f d3vk'<Ek,~,fe_k ,, ~,(v) > (3.51) O91 COp 

This involves the cross-correlation function between electric field fluc- 
tuations Ek, ~, = ik'Ck, o ~, and fluctuations in the phase space distribution for 
electrons, f;,o~,(v). This in turn can be related to diagonal correlations using 
the general relations (15) 

/) f e u -e D 2> <fk~(e )E  ~,_~>= q e  dva gk,~( ,Vl)ev, fk~,( 1)k2Ll~bk~,l 
m d 

k ~ fdvt / fe,nd,~) ] ~Cj, nd /,v,,~ \ 
4- ik:~:nl(k, co) (qj/8o) . \ J k o )  ~, } J - - k , - - ( x l  1, 1 /  

and (3.52) 

k2<jCk,~12> Ez' (qjqs/~2) = k2Gnl(k, co ) f f j j <fk,~(V) )> (3.53) -dr -dr '  j, na ('j',nd (,,, J --k, ~ \ ~  
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These expressions involve the correlation functions for the incoherent or 
nondiagonal fluctuations as defined in Refs. 15, 14, and 17. 

The weak turbulence result of Eq. (3.6) is recovered by making the 
usual quasilinear approximation for ( E f ) ,  which implies the replacements 

i. / [ ' j ' n d ( u ]  , g . j ' , n d  Q)']\ = 0, i.e., zero incoherent source; k J k ~  ~ ,r 1 /  
ii. f ~ ( v ) ~  ( f e ( v ) ) ,  i.e., no mean field vertex renormalization; 

iii. guo~(v, Vl) ~ g~ Va) = i(co - k" v + i6)-1 6(v - vl). 

A renormalized theory on the level of that of Horton and Choi is obtained 
by retaining (i) and (ii) but replacing guo~(v, v j) by the usual resonance 
broadened propagator -rb ~V ~k,~t , Vl), which is the solution of Eq. (2.9) when 
the polarization contributions to Eq. (2.11) for v s are neglected. In this 
theory Horton and Choi have shown that large-angle turbulent scattering 
destroys the Landau resonance and cuts off the linear growth rate for 
k' < k~i,, where ktmin.~oe ~ (WS/nT) .  In this approximation we have Vk,<Vk,,~e e 
where 9~,, is a renormalized electron contribution to the ion acoustic growth 
rate which is determined by the renormalized version of Eq. (3.11): 

1 k 2 
~e S 

l k  2 
4 7 ~ e 2 f d v f d v ' I m - r b / v  v')k �9 t?~(/e(v)) (3.54) 

- -  g k , c o k l  2 k~ mk 2 

It is easily shown that in this approximation ,~Tsw is given by Eq. (3.10) ~ Y k  

with v[,r simply replaced by the renormalized growth rates g~=+. Since 
~e e vu,<v k, we see that renormalization of the wave-particle resonances 
weakens 37[ sw compared to the weak turbulence prediction. Thus 
Langmuir waves are more stable than we predicted in Sections 3.1 and 3.2 
on the basis of the weak turbulence formulas. 

We can derive a similar result using the full DIA renormalization. 
Using Eqs. (3.51)-(3.53) we can show that so long as ~,/c0~,~ 1 ~fa-sw is 
given by Eq. (3.10) with v~, + replaced by 

1 k 2 
~e+ s _ __Im)~(k , , c@)  

where now 2~(k'e)') is the complete DIA electron susceptibility 

co~ 
~e(k, (I)): --i--~ f dv f dv' g~,,o~(v, v')k'Of[,o~(v' ) 

which is contained in the complete dielectric response of Eq. (2.7). 
However, in the complete DIA theory we cannot prove as easily that 
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e V k  ' ~[,,< v k, as in the case of the Choi-Horton theory. The complete -e in the 
full DIA includes polarization effects not included in the Horton-Choi 
resonance-broadened theory. At the level of wave-wave resonance 
broadened weak turbulence theory where the polarization terms are treated 
perturbatively these polarization terms do provide an additional damping 
due to off-resonant three- (ion acoustic) wave interactions as discussed in 
Section 2; this effect will again tend to decrease the growth rate ~, from its 
weak turbulence value. 

4. S U M M A R Y  A N D  C O M M E N T S  

In Section 2 we compared several forms of renormalized plasma tur- 
bulence theories with the general framework of Kraichnan's direct interac- 
tion theory: 

1. The first was the DIA algorithm applied to the nonlinear Poisson 
equation obtained by an expansion (to cubic order) of the Vlasov phase 
space distribution in powers of the electrostatic potential fluctuations. This 
yields a theory first proposed by Tsytovich for the ion acoustic problem 
which can account for the finite lifetime of ion acoustic excitations in the 
quasistationary turbulent state. This finite lifetime results from off-resonant 
three-wave coupling. 

2. The second theory was a renormalized theory of the Vlasov 
equation which assumes that the electrostatic potential fluctuations due to 
ion acoustic waves obey quasi-Gaussian statistics. This yields the renor- 
realized theory of Horton and Choi plus a mean field "vertex" renor- 
malization not considered by them. This theory (without "vertex renor- 
malization") is the most thoroughly worked out theory of ion acoustic tur- 
bulence and agrees at least qualitatively with experiment and numerical 
simulation. 

3. The third theory was the complete DIA applied to the Vlasov 
equation which contains 1 and 2 plus additional polarization terms which 
arise from the non-Gaussian statistics of the electrostatic and phase space 
fluctuations and are consistent with Poisson's equation and the non- 
linearity of the Vlasov equation. Both the propagator renormalization and 
the renormalization of the coupling of fluctuations to the mean field ("ver- 
tex renormalization") contain polarization terms whose significance for ion 
acoustic turbulence remains to be determined. 

In Section 3 these theories were applied to the stability of states of ion 
acoustic turbulence to the excitation of Langmuir waves. The destabilizing 
"turbulent bremsstrahtung" effect of Tsytovich etal. is shown to be 
dominated in many cases by resonant or nonresonant three-wave decay 
interactions which stabilize the coherent response for Langmuir excitation. 
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Renormalization effects due to ion acoustic wave-wave coupling and ion 
acoustic wave-particle coupling appear to increase the stability of 
Langmuir waves as a result of resonance broadening effects. The global 
wave kinetics for Langmuir waves was shown to involve the scattering 
(resonant or nonresonant) of Langmuir waves into regions of increased 
dissipation, either scattering into oppositely directed phase velocity 
Langmuir waves which are damped by the TSW effect or into regions of 
increased (linear) Landau damping. 

The results on Langmuir wave stability have an important bearing on 
the validity of the dissipative Zakharov model, which has been widely 
used  (24'26-28)4 as  a simplified model of the interaction of Langmuir waves 
and ion acoustic waves. This model consists of the usual Zakharov 
equations (29) to which linear dissipation is added for both the Langmuir 
envelope equation and the ion acoustic equation. The turbulent 
bremsstrahlung process of TSW is not included in the Zakharov model, 
while the decay processes--resonant and nonresonant--are included. (2v~ 
The nonresonant processes particularly depend on the additional dis- 
sipations terms in this model, at least in the weak turbulence limit. The fact 
that we find the decay processes to dominate the turbulent bremsstrahlung 
effect gives support to the usefulness and validity of the dissipative 
Zakharov model and is consistent with the usual arguments ~29) for the 
validity of the dissipationless Zakharov equations. 

The conventional wisdom (3~ has been that short-scale ion acoustic 
(i.e., density) fluctuations provide an effective damping for long-wave 
length Langmuir waves. The nonresonant decay results in Section 3.1.2 for 
2k<k'm~n pertain precisely to this regime. In addition we have 
demonstrated the stabilization of Langmuir waves by ion acoustic tur- 
bulence in the resonant regime kmin < 2k < k'ax and in the regime k~ax < 
2k < 2k I at least in certain cases. The consideration of strong turbulence 
effects is also new as far as we know. 

Recent one-dimensional kinetic simulations ~ and numerical 
solutions of the dissipative Zakharov model ~28) indicate that the picture 
developed here may be incomplete when the scales of the Langmuir waves 
and the ion acoustic waves are about equal, i.e., k~k' .  These studies 
showed (28~ that the local Langmuir wave-packets can be nucleated in 
preexisting ion density wells when a source of Langmuir energy (e.g., a 
pump field or beam instability) is present at longer wavelengths. This 
nucleation is just the coherent, near-resonant driving by the source of the 
local bound Langmuir state in the density cavity; the scales of this bound 
wave function and the cavity are nearly equal. The effective dissipation of 

4 For a recent review of this subject see Ref. 25. 
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the long-wavelength driving source by a random collection of short-scale 
density cavities may be adequately described by the theory discussed in this 
article. However, it is not clear that the incoherent turbulence theory can 
take into account the phase coherence observed in the local nucleation 
effect. 

The problem with the turbulence theory for k,,~k' can be seen in the 
fact that the correlation time in Eq. (3.19) becomes large when k = k'. For 
k < k', for example, the correlation time is relatively short and a Langmuir 
wave experiences an essentially random density field. For k ~ k '  the 
correlation time is much longer, and the Langmuir wave (at k) experiences 
a more coherent density field. From the Zakharov model for a prescribed, 
nearly Gaussianly distributed ensemble of density fluctuations one can 
show (27) quite rigorously that the weak turbulence results refered to in the 
text, i.e., those results which do not involve any renormalization, are valid 
p r o v i d e d  ]zlk']2)~2cop't'~.,~l, a n d  [(6n,2)l/2/r/] COp't'c.~l which can also be 
written as (W'/nT) < 9 ]Ak 2ol 2 ( k  - k - k .  )2 (in one dimension). [This is, 
seen to be consistent With Eqs. (3.24) and (3.34) for example.] For k ~ k  
these conditions are very restrictive and use of the renormalized theory 
becomes imperative. There is no proof that the renormalized theory will be 
accurate, however, and much more research is necessary to establish the 
limits of validity of such theories. 
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